Inductive Detection of Language Features via Clustering Minimal Pairs: Toward Feature-Rich Grammars in Machine Translation
ثبت نشده
چکیده
Syntax-based Machine Translation systems have recently become a focus of research with much hope that they will outperform traditional Phrase-Based Statistical Machine Translation (PBSMT). Toward this goal, we present a method for analyzing the morphosyntactic content of language from an Elicitation Corpus such as the one available in the LDC’s LCTL language packs. The presented method discovers a mapping between morphemes and linguistically relevant features. By providing this tool with which structure-based models of MT can be augmented with these rich features, we believe the discriminative power of current models can be improved. We conclude by outlining how the resulting output can then be used in inducing a morphosyntactically feature-rich grammar for AVENUE, a modern syntax-based MT system.
منابع مشابه
Inductive Detection of Language Features via Clustering Minimal Pairs: Toward Feature-Rich Grammars in Machine Translation
Syntax-based Machine Translation systems have recently become a focus of research with much hope that they will outperform traditional Phrase-Based Statistical Machine Translation (PBSMT). Toward this goal, we present a method for analyzing the morphosyntactic content of language from an Elicitation Corpus such as the one included in the LDC’s upcoming LCTL language packs. The presented method ...
متن کاملCorefrence resolution with deep learning in the Persian Labnguage
Coreference resolution is an advanced issue in natural language processing. Nowadays, due to the extension of social networks, TV channels, news agencies, the Internet, etc. in human life, reading all the contents, analyzing them, and finding a relation between them require time and cost. In the present era, text analysis is performed using various natural language processing techniques, one ...
متن کاملOne System, Many Domains: Open-Domain Statistical Machine Translation via Feature Augmentation
In this paper, we introduce a simple technique for incorporating domain information into a statistical machine translation system that significantly improves translation quality when test data comes from multiple domains. Our approach augments (conjoins) standard translation model and language model features with domain indicator features and requires only minimal modifications to the optimizat...
متن کاملتخمین اطمینان خروجی ترجمه ماشینی با استفاده از ویژگی های جدید ساختاری و محتوایی
Despite machine translation (MT) wide suc-cess over last years, this technology is still not able to exactly translate text so that except for some language pairs in certain domains, post editing its output may take longer time than human translation. Nevertheless by having an estimation of the output quality, users can manage imperfection of this tech-nology. It means we need to estimate the c...
متن کاملToward Active Learning in Data Selection: Automatic Discovery of Language Features During Elicitation
Data Selection has emerged as a common issue in language technologies. We define Data Selection as the choosing of a subset of training data that is most effective for a given task. This paper describes deductive feature detection, one component of a data selection system for machine translation. Feature detection determines whether features such as tense, number, and person are expressed in a ...
متن کامل